
HSA MEMORY MODEL

HOT CHIPS TUTORIAL - AUGUST 2013

BENEDICT R GASTER

WWW.QUALCOMM.COM

OUTLINE

 HSA Memory Model

 OpenCL 2.0

 Has a memory model too

 Obstruction-free bounded deques

 An example using the HSA memory model

HSA MEMORY MODEL

© Copyright 2012 HSA Foundation. All Rights Reserved. 3

TYPES OF MODELS

 Shared memory computers and programming languages, divide complexity

into models:

1. Memory model specifies safety

 e.g. can a work-item prevent others from progressing?

 This is what this section of the tutorial will focus on

2. Execution model specifies liveness

 Described in Ben Sander’s tutorial section on HSAIL

 e.g. can a work-item prevent others from progressing

3. Performance model specifies the big picture

 e.g. caches or branch divergence

 Specific to particular implementations and outside the scope of today’s tutorial

THE PROBLEM

 Assume all locations (a, b, …) are initialized to 0

 What are the values of $s2 and $s4 after execution?

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

Work-item 0

mov_u32 $s1, 1 ;

st_global_u32 $s1, [&a] ;

ld_global_u32 $s2, [&b] ;

Work-item 1

mov_u32 $s3, 1 ;

st_global_u32 $s3, [&b] ;

ld_global_u32 $s4, [&a] ;

*a = 1;

int x = *b;

*b = 1;

int y = *a;

initially *a = 0 && *b = 0

THE SOLUTION

 The memory model tells us:

 Defines the visibility of writes to memory at any given point

 Provides us with a set of possible executions

© Copyright 2012 HSA Foundation. All Rights Reserved. 6

WHAT MAKES A GOOD MEMORY MODEL*

 Programmability ; A good model should make it (relatively) easy to write multi-

work-item programs. The model should be intuitive to most users, even to

those who have not read the details

 Performance ; A good model should facilitate high-performance

implementations at reasonable power, cost, etc. It should give implementers

broad latitude in options

 Portability ; A good model would be adopted widely or at least provide

backward compatibility or the ability to translate among models

* S. V. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors. PhD thesis,

Computer Sciences Department, University of Wisconsin–Madison, Nov. 1993.

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

SEQUENTIAL CONSISTENCY (SC)*

 Axiomatic Definition

 A single processor (core) sequential if “the result of an execution is the same as if

the operations had been executed in the order specified by the program.”

 A multiprocessor sequentially consistent if “the result of any execution is the same

as if the operations of all processors (cores) were executed in some sequential

order, and the operations of each individual processor (core) appear in this

sequence in the order specified by its program.”

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

 But HW/Compiler actually implements more relaxed models, e.g. ARMv7

* L. Lamport. How to Make a Multiprocessor Computer that Correctly

Executes Multiprocessor Programs. IEEE Transactions on Computers,

C-28(9):690–91, Sept. 1979.

SEQUENTIAL CONSISTENCY (SC)

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

Work-item 0

mov_u32 $s1, 1 ;

st_global_u32 $s1, [&a] ;

ld_global_u32 $s2, [&b] ;

Work-item 1

mov_u32 $s3, 1 ;

st_global_u32 $s3, [&b] ;

ld_global_u32 $s4, [&a] ;

mov_u32 $s1, 1 ;

mov_u32 $s3, 1;

st_global_u32 $s1, [&a] ;

ld_global_u32 $s2, [&b] ;

st_global_u32 $s3, [&b] ;

ld_global_u32 $s4, [&a] ;

$s2 = 0 && $s4 = 1

BUT WHAT ABOUT ACTUAL HARDWARE

 Sequential consistency is (reasonably) easy to understand, but limits

optimizations that the compiler and hardware can perform

 Many modern processors implement many reordering optimizations

 Store buffers (TSO*), work-items can see their own stores early

 Reorder buffers (XC*), work-items can see other work-items store early

© Copyright 2012 HSA Foundation. All Rights Reserved. 10

*TSO – Total Store Order as implemented by Sparc and x86

*XC – Relaxed Consistency model, e.g. ARMv7, Power7, and Adreno

RELAXED CONSISTENCY (XC)

© Copyright 2012 HSA Foundation. All Rights Reserved. 11

Work-item 0

mov_u32 $s1, 1 ;

st_global_u32 $s1, [&a] ;

ld_global_u32 $s2, [&b] ;

Work-item 1

mov_u32 $s3, 1 ;

st_global_u32 $s3, [&b] ;

ld_global_u32 $s4, [&a] ;

mov_u32 $s1, 1 ;

mov_u32 $s3, 1;

ld_global_u32 $s2, [&b] ;

ld_global_u32 $s4, [&a] ;

st_global_u32 $s1, [&a] ;

st_global_u32 $s3, [&b] ;

$s2 = 0 && $s4 = 0

WHAT ARE OUR 3 Ps?

 Programmability ; XC is really pretty hard for the programmer to reason about

what will be visible when

 many memory model experts have been known to get it wrong!

 Performance ; XC is good for performance, the hardware (compiler) is free to

reorder many loads and stores, opening the door for performance and power

enhancements

 Portability ; XC is very portable as it places very little constraints

© Copyright 2012 HSA Foundation. All Rights Reserved. 12

MY CHILDREN AND COMPUTER

ARCHITECTS ALL WANT

 To have their cake and eat it!

© Copyright 2012 HSA Foundation. All Rights Reserved. 13

Put picture with kids and cake

HSA Provides: The ability to enable

programmers to reason with (relatively)

intuitive model of SC, while still achieving the

benefits of XC!

SEQUENTIAL CONSISTENCY FOR DRF*

 HSA, following Java, C++11, and OpenCL 2.0 adopts SC for Data Race Free

(DRF)

 plus some new capabilities !

 (Informally) A data race occurs when two (or more) work-items access the

same memory location such that:

 At least one of the accesses is a WRITE

 There are no intervening synchronization operations

 SC for DRF asks:

 Programmers to ensure programs are DRF under SC

 Implementers to ensure that all executions of DRF programs on the relaxed model

are also SC executions

© Copyright 2012 HSA Foundation. All Rights Reserved. 14

*S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proceedings of the

17th Annual International Symposium on Computer Architecture, pp. 2–14, May 1990

HSA SUPPORTS RELEASE CONSISTENCY

 HSA’s memory model is based on RCSC:

 All ld_acq and st_rel are SC

 Means coherence on all ld_acq and st_rel to a single address.

 All ld_acq and st_rel are program ordered per work-item (actually: sequence-

order by language constraints)

 Similar model adopted by ARMv8

 HSA extends RCSC to SC for HRF*, to access the full capabilities of modern

heterogeneous systems, containing CPUs, GPUs, and DSPs, for example.

© Copyright 2012 HSA Foundation. All Rights Reserved. 15

*Sequential Consistency for Heterogeneous-Race-Free Programmer-centric

Memory Models for Heterogeneous Platforms. D. R. Hower, Beckman, B. R. Gaster,

B. Hechtman, M D. Hill, S. K. Reinhart, and D. Wood. MSPC’13.

MAKING RELAXED CONSISTENCY WORK

© Copyright 2012 HSA Foundation. All Rights Reserved. 16

Work-item 0

mov_u32 $s1, 1 ;

st_global_u32_rel $s1, [&a] ;

ld_global_u32_acq $s2, [&b] ;

Work-item 1

mov_u32 $s3, 1 ;

st_global_u32_rel $s3, [&b] ;

ld_global_u32_acq $s4, [&a] ;

mov_u32 $s1, 1 ;

mov_u32 $s3, 1;

st_global_u32_rel $s1, [&a] ;

ld_global_u32_acq $s2, [&b] ;

st_global_u32_rel $s3, [&b] ;

ld_global_u32_acq $s4, [&a] ;

 $s2 = 0 && $s4 = 1

SEQUENTIAL CONSISTENCY FOR DRF

 Two memory accesses participate in a data race if they

 access the same location

 at least one access is a store

 can occur simultaneously

 i.e. appear as adjacent operations in interleaving.

 A program is data-race-free if no possible execution

results in a data race.

 Sequential consistency for data-race-free programs

 Avoid everything else

HSA: Not good enough!

ALL ARE NOT EQUAL – OR SOME CAN

SEE BETTER THAN OTHERS

 Remember the HSAIL Execution Model

© Copyright 2012 HSA Foundation. All Rights Reserved. 18

device scope

group scope

wave scope

platform scope

DATA-RACE-FREE IS NOT ENOUGH

 t1 t2 t3 t4

st_global 1, [&X]

st_global_rel 0, [&flag]
 atomic_cas_global_ar 1, 0, [&flag]
 ...

 st_global_rel 0, [&flag]
 atomic_cas_global_ar ,1 0, [&flag]
 ld (??), [&x]

group #1-2 group #3-4

 Two ordinary memory accesses participate in a data race if they

Access same location

At least one is a store

Can occur simultaneously

Not a data race…

 Is it SC?

Well that depends

t4 t3 t1 t2

SGlobal

S12 S34

visibility implied by

causality?

SEQUENTIAL CONSISTENCY FOR

HETEROGNEOUS-RACE-FREE

 Two memory accesses participate in a heterogeneous race if

 access the same location

 at least one access is a store

 can occur simultaneously

 i.e. appear as adjacent operations in interleaving.

 Are not synchronized with “enough” scope

 A program is heterogeneous-race-free if no possible

execution results in a heterogeneous race.

 Sequential consistency for heterogeneous-race-free

programs

 Avoid everything else

HSA HETEROGENEOUS RACE FREE

 HRF0: Basic Scope Synchronization

 “enough” = both threads synchronize using identical scope

 Recall example:

 Contains a heterogeneous race in HSA

 t1 t2 t3 t4

st_global 1, [&X]

st_global_rel_wg 0, [&flag]
...

 atomic_cas_global_ar_wg,1 0, [&flag]
 ld (??), [&x]

Workgroup #1-2 Workgroup #3-4 HSA Conclusion:

This is bad. Don’t do it.

HOW TO USE HSA WITH SCOPES

Use smallest scope that includes all

producers/consumers of shared data

HSA Scope Selection Guideline

Implication:

Producers/consumers must be known at synchronization time

Want: For performance, use smallest scope possible

What is safe in HSA?

Is this a valid assumption?

REGULAR GPGPU WORKLOADS

N

M

Define

Problem Space

Partition

Hierarchically

Communicate

Locally

N times

Communicate

Globally

M times

Well defined (regular) data partitioning +

Well defined (regular) synchronization pattern =

 Producer/consumers are always known

Generally: HSA works well with

regular data-parallel workloads

 t1 t2 t3 t4

st_global 1, [&X]

st_global_rel_plat 0, [&flag]
 atomic_cas_global_ar_plat 1, 0, [&flag]
 ...

 st_global_rel_plat 0, [&flag]
 atomic_cas_global_ar_plat ,1 0, [&flag]
 ld $s1, [&x]

IRREGULAR WORKLOADS
 HSA: example is race

 Must upgrade wg (workgroup) -> plat (platform)

 HSA memory model says:

 ld $s1, [&x], will see value (1)!

Workgroup #1-2 Workgroup #3-4

OPENCL 2.0

HAS A MEMORY MODEL TOO
MAPPING ONTO HSA’S MEMORY MODEL

OPENCL 2.0 BACKGROUND

 Provisional specification released at SIGGRAPH’13, July 2013.

 Huge update to OpenCL to account for the evolving hardware landscape and

emerging use cases (e.g. irregular work loads)

 Key features:

 Shared virtual memory, including platform atomics

 Formally defined memory model based on C11 plus support for scopes

 Includes an extended set of C1X atomic operations

 Generic address space, that subsumes global, local, and private

 Device to device enqueue

 Out-of-order device side queuing model

 Backwards compatible with OpenCL 1.x

 It is straightforward to provide a mapping from OpenCL 1.x to the proposed

model

 OpenCL 1.x atomics are unordered and so map to atomic_op_X

 Mapping for fences not shown but straightforward

OPENCL 1.X MEMORY MODEL MAPPING

OpenCL Operation HSA Memory Model

Operation

Load ld_global_wg

ld_group_wg

Store st_global_wg

st_group_wg

atomic_op atomic_op_global_comp

atomic_op_group_wg

barrier(…) sync_wg

OPENCL 2.0 MEMORY MODEL MAPPING

OpenCL Operation HSA Memory Model Operation

Load

memory_order_relaxed

atomic_ld_[global | group]_scope

Store

Memory_order_relaxed

atomic_st_[global | group]_scope

Load

memory_order_acquire

ld_[global | group]_acq_scope

Load

memory_order_seq_cst

fence_rel_scope ; ld_[global | group]_acq_scope

Store

memory_order_release

st_[global | group]_rel_scope

Store

Memory_order_seq_cst

st_[global | group]_rel_scope ; fence_acq_scope

memory_order_acq_rel atomic_op_[global | group]_acq_rel_scope

memory_order_seq_cst atomic_op_[global|group]_acq_rel_scope

OPENCL 2.0 MEMORY SCOPE MAPPING

OpenCL Scope HSA Scope

memory_scope_work_group _wg

memory_scope_device _component

memory_scope_all_svm_devices _platform

© Copyright 2012 HSA Foundation. All Rights Reserved. 29

OBSTRUCTION-FREE

BOUNDED DEQUES

AN EXAMPLE USING THE HSA MEMORY MODEL

CONCURRENT DATA-STRUCTURES

 Why do we need such a memory model in practice?

 One important application of memory consistency is in the development and

use of concurrent data-structures

 In particular, there are a class data-structures implementations that provide

non-blocking guarantees:

 wait-free; An algorithm is wait-free if every operation has a bound on the number of

steps the algorithm will take before the operation completes

 In practice very hard to build efficient data-structures that meet this requirement

 lock-free; An algorithm is lock-free if every if, given enough time, at least one thread

of the work-items (or threads) makes progress

 In practice lock-free algorithms are implemented by work-item cooperating with

one enough to allow progress

 Obstruction-free; An algorithm is obstruction-free if a work-item, running in isolation,

can make progress

Emerging Compute Cluster

BUT WAY NOT JUST USE MUTUAL

EXCLUSION?

© Copyright 2012 HSA Foundation. All Rights Reserved. 32

Fabric & Memory Controller

Krait
CPU Adreno

GPU
Krait
CPU

Krait
CPU

Krait
CPU

MMU
MMUs

2MB L2

Hexagon
DSP

MMU

?? ??

Diversity in a heterogeneous system, such as

different clock speeds, different scheduling

policies, and more can mean traditional mutual

exclusion is not the right choice

CONCURRENT DATA-STRUCTURES

 Emerging heterogeneous compute clusters means we need:

 To adapt existing concurrent data-structures

 Developer new concurrent data-structures

 Lock based programming may still be useful but often these algorithms will

need to be lock-free

 Of course, this is a key application of the HSA memory model

 To showcase this we highlight the development of a well known (HLM)

obstruction-free deque*

© Copyright 2012 HSA Foundation. All Rights Reserved. 33

*Herlihy, M. et al. 2003. Obstruction-free

synchronization: double-ended queues as an example.

(2003), 522–529.

HLM - OBSTRUCTION-FREE DEQUE

 Uses a fixed length circular queue

 At any given time, reading from left to right, the array will contain:

 Zero or more left-null (LN) values

 Zero or more dummy-null (DN) values

 Zero or more right-null (RN) values

 At all times there must be:

 At least two different nulls values

 At least one LN or DN, and at least one DN or RN

 Memory consistency is required to allow multiple producers and multiple

consumers, potentially happening in parallel from the left and right ends, to see

changes from other work-items (HSA Components) and threads (HSA Agents)

© Copyright 2012 HSA Foundation. All Rights Reserved. 34

HLM - OBSTRUCTION-FREE DEQUE

© Copyright 2012 HSA Foundation. All Rights Reserved. 35

LNLN vLN RNv RNRN

left right

Key:

LN – left null value

RN – right null value

v – value

left – left hint index

right – right hint index

C REPRESENTATION OF DEQUE

struct node {

 uint64_t type : 2; // null type (LN, RN, DN)

 uint64_t counter : 8 ; // version counter to avoid ABA

 uint64_t value : 54 ; // index value stored in queue

}

struct queue {

 unsigned int size; // size of bounded buffer

 node * array; // backing store for deque itself

}

© Copyright 2012 HSA Foundation. All Rights Reserved. 36

HSAIL REPRESENTATION

 Allocate a deque in global memory using HSAIL

 @deque_instance:

 align 64 global_u32 &size;

 align 8 global_u64 &array;

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

ORACLE

 Assume a function:

 function &rcheck_oracle (arg_u32 %k, arg_u64 %left, arg_u64 %right) (arg_u64 %queue);

 Which given a deque

 returns (%k) the position of the left most of RN

 ld_global_acq used to read node from array

 Makes one if necessary (i.e. if there are only LN or DN)

 atomic_cas_global_ar, required to make new RN

 returns (%left) the left node (i.e. the value to the left of the left most RN position)

 returns (%right) the right node (i.e. the value at position (%k))

© Copyright 2012 HSA Foundation. All Rights Reserved. 38

RIGHT POP
function &right_pop(arg_u32err, arg_u64 %result) (arg_u64 %deque) {

 // load queue address

 ld_arg_u64 $d0, [%deque];

@loop_forever:

 // setup and call right oracle to get next RN

 arg_u32 %k; arg_u64 %current; arg_u64 %next;

 call &rcheck_oracle(%queue) ;

 ld_arg_u32 $s0, [%k]; ld_arg_u64 $d1, [%current]; ld_arg_u64 $d2, [%next];

 // current.value($d5)

 shr_u64 $d5, $d1, 62;

 // current.counter($d6)

 and_u64 $d6, $d1,

 0x3FC0000000000000;

 shr_u64 $d6, $d6, 54;

// current.value($d7)

 and_u64 $d7, $d1, 0x3FFFFFFFFFFFFF;

// next.counter($d8)

 and_u64 $d8, $d2, 0x3FC0000000000000; shr_u64 $d8, $d8, 54; brn @loop_forever ;

}

© Copyright 2012 HSA Foundation. All Rights Reserved. 39

RIGHT POP – TEST FOR EMPTY
 // current.type($d5) == LN || current.type($d5) == DN

 cmp_neq_b1_u64 $c0, $d5, LN; cmp_neq_b1_u64 $c1, $d5, DN;

 or_b1 $c0, $c0, $c1;

 cbr $c0, @not_empty ;

 // current node index (%deque($d0) + (%k($s1) - 1) * 16)

 add_u32 $s1, $s0, -1; mul_u32 $s1, $s1, 16; add_u32 $d3, $d0, $s0;

 ld_global_acq_u64 $d4, [$d3];

 cmp_neq_b1_u64 $c0, $d4, $d1;

 cbr $c0, @not_empty;

 st_arg_u32 EMPTY, [&err]; // deque empty so return EMPTY

 %ret

@not_empty:

© Copyright 2012 HSA Foundation. All Rights Reserved. 40

RIGHT POP – TRY READ/REMOVE NODE
 // $d9 = (RN, next.cnt+1, 0)

 add_u64 $d8, $d8, 1;

 shl_u64 $d9, RN, 62;

 and_u64 $d8, $d8, $d9;

 // cas(deq+k, next, node(RN, next.cnt+1, 0))

 atomic_cas_global_ar_u64 $d9, [$s0], $d2, $d9;

 cmp_neq_u64 $c0, $d9, $d2;

 cbr $c0, @cas_failed;

 // $d9 = (RN, current.cnt+1, 0)

 add_u64 $d6, $d6, 1;

 shl_u64 $d9, RN, 62;

 and_u64 $d9, $d6, $d9;

 // cas(deq+(k-1), curr, node(RN, curr.cnt+1,0)

 atomic_cas_global_ar_u64 $d9, [$s1], $d1, $d9;

 cmp_neq_u64 $c0, $d9, $d1;

 cbr $c0, @cas_failed;

 st_arg_u32 SUCCESS, [&err];

 st_arg_u64 $d7, [&value];

 %ret
@cas_failed:

 // loop back around and try again

© Copyright 2012 HSA Foundation. All Rights Reserved. 41

TAKE AWAYS

 HSA provides a powerful and modern memory model

 Based on the well know SC for DRF

 Defined as Release Consistency

 Extended with scopes as defined by HRF

 OpenCL 2.0 introduces a new memory model

 Also based on SC for DRF

 Also defined in terms of Release Consistency

 Also Extended with scope as defined in HRF

 Has a well defined mapping to HSA

 Concurrent algorithm development for emerging heterogeneous computing

cluster can benefit from HSA and OpenCL 2.0 memory models

© Copyright 2012 HSA Foundation. All Rights Reserved. 42

