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OUTLINE 

 HSA Memory Model 

 

 OpenCL 2.0  

 Has a memory model too 

 

 Obstruction-free bounded deques 

 An example using the HSA memory model 



HSA MEMORY MODEL 
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TYPES OF MODELS 

 Shared memory computers and programming languages, divide complexity 

into models: 

1. Memory model specifies safety 

 e.g. can a work-item prevent others from progressing? 

 This is what this section of the tutorial will focus on 

2. Execution model specifies liveness 

 Described in Ben Sander’s tutorial section on HSAIL 

 e.g. can a work-item prevent others from progressing 

3. Performance model specifies the big picture 

 e.g. caches or branch divergence 

 Specific to particular implementations and outside the scope of today’s tutorial 



THE PROBLEM 

 Assume all locations (a, b, …) are initialized to 0 

 What are the values of $s2 and $s4 after execution? 
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Work-item 0 

 

mov_u32 $s1, 1 ; 

st_global_u32 $s1, [&a] ; 

ld_global_u32 $s2, [&b] ; 

Work-item 1 

 

mov_u32 $s3, 1 ; 

st_global_u32 $s3, [&b] ; 

ld_global_u32 $s4, [&a] ; 

*a = 1; 

int x = *b; 

*b = 1; 

int y = *a; 

initially *a = 0 && *b = 0  



THE SOLUTION 

 The memory model tells us: 

 Defines the visibility of writes to memory at any given point 

 Provides us with a set of possible executions 
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WHAT MAKES A GOOD MEMORY MODEL* 

 Programmability ; A good model should make it (relatively) easy to write multi- 

work-item programs. The model should be intuitive to most users, even to 

those who have not read the details  

 Performance ; A good model should facilitate high-performance 

implementations at reasonable power, cost, etc. It should give implementers 

broad latitude in options  

 Portability ; A good model would be adopted widely or at least provide 

backward compatibility or the ability to translate among models  

 

 

* S. V. Adve. Designing Memory Consistency Models for Shared-Memory  Multiprocessors. PhD thesis, 

Computer Sciences Department, University of Wisconsin–Madison, Nov. 1993.  
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SEQUENTIAL CONSISTENCY (SC)* 

 Axiomatic Definition 

 A single processor (core) sequential if “the result of an execution is the same as if 

the operations had been executed in the order specified by the program.”  

 A multiprocessor sequentially consistent if “the result of any execution is the same 

as if the operations of all processors (cores) were executed in some sequential 

order, and the operations of each individual processor (core) appear in this 

sequence in the order specified by its program.”  
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 But HW/Compiler actually implements more relaxed models, e.g. ARMv7 

 

* L. Lamport. How to Make a Multiprocessor Computer that Correctly 

Executes Multiprocessor Programs. IEEE Transactions on Computers, 

C-28(9):690–91, Sept. 1979. 



SEQUENTIAL CONSISTENCY (SC) 
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Work-item 0 

 

mov_u32 $s1, 1 ; 

st_global_u32 $s1, [&a] ; 

ld_global_u32 $s2, [&b] ; 

Work-item 1 

 

mov_u32 $s3, 1 ; 

st_global_u32 $s3, [&b] ; 

ld_global_u32 $s4, [&a] ; 

mov_u32 $s1, 1 ; 

mov_u32 $s3, 1; 

st_global_u32 $s1, [&a] ; 

ld_global_u32 $s2, [&b] ; 

st_global_u32 $s3, [&b] ; 

ld_global_u32 $s4, [&a] ; 

 

 

$s2 = 0 && $s4 = 1 



BUT WHAT ABOUT ACTUAL HARDWARE 

 Sequential consistency is (reasonably) easy to understand, but limits 

optimizations that the compiler and hardware can perform 

 Many modern processors implement many reordering optimizations 

 Store buffers (TSO*), work-items can see their own stores early 

 Reorder buffers (XC*), work-items can see other work-items store early 
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*TSO  – Total Store Order as implemented by Sparc and x86 

*XC  – Relaxed Consistency model, e.g. ARMv7, Power7, and Adreno 



RELAXED CONSISTENCY (XC) 
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Work-item 0 

 

mov_u32 $s1, 1 ; 

st_global_u32 $s1, [&a] ; 

ld_global_u32 $s2, [&b] ; 

Work-item 1 

 

mov_u32 $s3, 1 ; 

st_global_u32 $s3, [&b] ; 

ld_global_u32 $s4, [&a] ; 

mov_u32 $s1, 1 ; 

mov_u32 $s3, 1; 

ld_global_u32 $s2, [&b] ; 

ld_global_u32 $s4, [&a] ; 

st_global_u32 $s1, [&a] ; 

st_global_u32 $s3, [&b] ; 

 

 

$s2 = 0 && $s4 = 0 



WHAT ARE OUR 3 Ps?  

 Programmability ; XC is really pretty hard for the programmer to reason about 

what will be visible when 

 many memory model experts have been known to get it wrong! 

 

 Performance ; XC is good for performance, the hardware (compiler) is free to 

reorder many loads and stores, opening the door for performance and power 

enhancements  

 

 Portability ; XC is very portable as it places very little constraints 
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MY CHILDREN AND COMPUTER 

ARCHITECTS ALL WANT 

 To have their cake and eat it! 
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Put picture with kids and cake 

HSA Provides: The ability to enable 

programmers to reason with (relatively) 

intuitive model of SC, while still achieving the 

benefits of XC! 



SEQUENTIAL CONSISTENCY FOR DRF* 

 HSA, following Java, C++11, and OpenCL 2.0 adopts SC for Data Race Free 

(DRF) 

 plus some new capabilities ! 

 (Informally) A data race occurs when two (or more) work-items access the 

same memory location such that:  

 At least one of the accesses is a WRITE 

 There are no intervening synchronization operations  

 SC for DRF asks:  

 Programmers to ensure programs are DRF under SC  

 Implementers to ensure that all executions of DRF programs on the relaxed model 

are also SC executions  
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*S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proceedings of the 

17th Annual International Symposium on Computer Architecture, pp. 2–14, May 1990  

 



HSA SUPPORTS RELEASE CONSISTENCY 

 HSA’s memory model is based on RCSC: 

 All ld_acq and st_rel are SC 

  Means coherence on all ld_acq and st_rel to a single address.  

 All ld_acq and st_rel are program ordered per work-item (actually: sequence-

order by language constraints)  

 

 Similar model adopted by ARMv8 

 

 HSA extends RCSC to SC for HRF*, to access the full capabilities of modern 

heterogeneous systems, containing CPUs, GPUs, and DSPs, for example. 
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*Sequential Consistency for Heterogeneous-Race-Free Programmer-centric 

Memory Models for Heterogeneous Platforms. D. R. Hower, Beckman, B. R. Gaster, 

B. Hechtman, M D. Hill, S. K. Reinhart, and D. Wood. MSPC’13. 



MAKING RELAXED CONSISTENCY WORK 
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Work-item 0 

 

mov_u32 $s1, 1 ; 

st_global_u32_rel $s1, [&a] ; 

ld_global_u32_acq $s2, [&b] ; 

Work-item 1 

 

mov_u32 $s3, 1 ; 

st_global_u32_rel $s3, [&b] ; 

ld_global_u32_acq $s4, [&a] ; 

mov_u32 $s1, 1 ; 

mov_u32 $s3, 1; 

st_global_u32_rel $s1, [&a] ; 

ld_global_u32_acq $s2, [&b] ; 

st_global_u32_rel $s3, [&b] ; 

ld_global_u32_acq $s4, [&a] ; 

 

 

 $s2 = 0 && $s4 = 1 



SEQUENTIAL CONSISTENCY FOR DRF 

 Two memory accesses participate in a data race if they 

 access the same location 

 at least one access is a store 

 can occur simultaneously 

 i.e. appear as adjacent operations in interleaving. 

 A program is data-race-free if no possible execution 

results in a data race. 

 Sequential consistency for data-race-free programs 

 Avoid everything else 

 

 

HSA: Not good enough! 



ALL ARE NOT EQUAL – OR SOME CAN 

SEE BETTER THAN OTHERS 

 Remember the HSAIL Execution Model 
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device scope 

group scope 

wave scope 

platform scope 



DATA-RACE-FREE IS NOT ENOUGH 

   t1                        t2                   t3               t4 

st_global 1, [&X] 

st_global_rel 0, [&flag] 
                     atomic_cas_global_ar 1, 0, [&flag] 
                     ... 

                     st_global_rel 0, [&flag] 
                                             atomic_cas_global_ar ,1 0, [&flag] 
                                             ld (??), [&x] 

group #1-2 group #3-4 

 Two ordinary memory accesses participate in a data race if they 

Access same location 

At least one is a store 

Can occur simultaneously 

 
Not a data race… 

     Is it SC? 

Well that depends 

t4 t3 t1 t2 

SGlobal 

S12 S34 

visibility implied by 

causality? 



SEQUENTIAL CONSISTENCY FOR 

HETEROGNEOUS-RACE-FREE 

 Two memory accesses participate in a heterogeneous race if 

 access the same location 

 at least one access is a store 

 can occur simultaneously 

 i.e. appear as adjacent operations in interleaving. 

 Are not synchronized with “enough” scope 

 A program is heterogeneous-race-free if no possible 

execution results in a heterogeneous race. 

 Sequential consistency for heterogeneous-race-free 

programs 

 Avoid everything else 

 

 



HSA HETEROGENEOUS RACE FREE 
 

 HRF0: Basic Scope Synchronization 

 “enough” =  both threads synchronize using identical scope 

 Recall example: 

 Contains a heterogeneous race in HSA 

   t1                        t2                   t3               t4 

st_global 1, [&X] 

st_global_rel_wg 0, [&flag] 
... 

                      
                                    atomic_cas_global_ar_wg,1 0, [&flag] 
                                    ld (??), [&x] 

Workgroup #1-2 Workgroup #3-4 HSA Conclusion:  

This is bad. Don’t do it. 



HOW TO USE HSA WITH SCOPES 

Use smallest scope that includes all 

producers/consumers of shared data 
 

HSA Scope Selection Guideline 

Implication:  

Producers/consumers must be known at synchronization time 

Want: For performance, use smallest scope possible 

What is safe in HSA? 

Is this a valid assumption? 



REGULAR GPGPU WORKLOADS 

N 

M 

Define 

Problem Space 

Partition  

Hierarchically 

Communicate 

Locally 

N times 

Communicate 

Globally 

M times 

Well defined (regular) data partitioning + 

Well defined (regular) synchronization pattern = 

 Producer/consumers are always known 

Generally:  HSA works well with 

regular data-parallel workloads 



   t1                        t2                   t3               t4 

st_global 1, [&X] 

st_global_rel_plat 0, [&flag] 
                     atomic_cas_global_ar_plat 1, 0, [&flag] 
                     ... 

                     st_global_rel_plat 0, [&flag] 
                                            atomic_cas_global_ar_plat ,1 0, [&flag] 
                                             ld $s1, [&x] 

IRREGULAR WORKLOADS 
 HSA: example is race 

 Must upgrade wg (workgroup) -> plat (platform) 

 HSA memory model says:  

 ld $s1, [&x], will see value (1)! 

Workgroup #1-2 Workgroup #3-4 



OPENCL 2.0  

HAS A MEMORY MODEL TOO 
MAPPING ONTO HSA’S MEMORY MODEL 



OPENCL 2.0 BACKGROUND 

 Provisional specification released at SIGGRAPH’13, July 2013. 

 Huge update to OpenCL to account for the evolving hardware landscape and 

emerging use cases (e.g. irregular work loads) 

 Key features: 

 Shared virtual memory, including platform atomics 

 Formally defined memory model based on C11 plus support for scopes 

 Includes an extended set of C1X atomic operations 

 Generic address space, that subsumes global, local, and private 

 Device to device enqueue 

 Out-of-order device side queuing model 

 Backwards compatible with OpenCL 1.x 

 

 



 It is straightforward to provide a mapping from OpenCL 1.x to the proposed 

model 

 

 

 

 

 

 

 OpenCL 1.x atomics are unordered and so map to atomic_op_X 

 Mapping for fences not shown but straightforward 

 

 

OPENCL 1.X MEMORY MODEL MAPPING 

OpenCL Operation HSA Memory Model 

Operation 

Load ld_global_wg 

ld_group_wg 

Store st_global_wg 

st_group_wg 

atomic_op atomic_op_global_comp 

atomic_op_group_wg 

barrier(…) sync_wg 



OPENCL 2.0 MEMORY MODEL MAPPING 

OpenCL Operation HSA Memory Model Operation 

Load 

memory_order_relaxed 

atomic_ld_[global | group]_scope 

Store 

Memory_order_relaxed 

atomic_st_[global | group]_scope 

Load 

memory_order_acquire 

ld_[global | group]_acq_scope 

Load 

memory_order_seq_cst 

fence_rel_scope ; ld_[global | group]_acq_scope  

Store 

memory_order_release 

st_[global | group]_rel_scope 

 

Store 

Memory_order_seq_cst 

st_[global | group]_rel_scope ; fence_acq_scope 

 

memory_order_acq_rel atomic_op_[global | group]_acq_rel_scope 

memory_order_seq_cst atomic_op_[global|group]_acq_rel_scope 



OPENCL 2.0 MEMORY SCOPE MAPPING 

OpenCL Scope HSA Scope 

memory_scope_work_group _wg 

memory_scope_device  _component 

memory_scope_all_svm_devices  _platform 
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OBSTRUCTION-FREE  

BOUNDED DEQUES  

 
AN EXAMPLE USING THE HSA MEMORY MODEL 



CONCURRENT DATA-STRUCTURES 

 Why do we need such a memory model in practice? 

 One important application of memory consistency is in the development and 

use of concurrent data-structures 

 In particular, there are a class data-structures implementations that provide 

non-blocking guarantees: 

 wait-free; An algorithm is wait-free if every operation has a bound on the number of 

steps the algorithm will take before the operation completes 

 In practice very hard to build efficient data-structures that meet this requirement 

 lock-free; An algorithm is lock-free if every if, given enough time, at least one thread 

of the work-items (or threads) makes progress 

 In practice lock-free algorithms are implemented by work-item cooperating with 

one enough to allow progress 

 Obstruction-free; An algorithm is obstruction-free if a work-item, running in isolation, 

can make progress 



Emerging Compute Cluster  

BUT WAY NOT JUST USE MUTUAL 

EXCLUSION? 
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Fabric & Memory Controller 

Krait 
CPU Adreno 

GPU 
Krait 
CPU 

Krait 
CPU 

Krait 
CPU 

MMU 
MMUs 

2MB L2 

Hexagon 
DSP 

MMU 

?? ?? 

Diversity in a heterogeneous system, such as 

different clock speeds, different scheduling 

policies, and more can mean traditional mutual 

exclusion is not the right choice   
 



CONCURRENT DATA-STRUCTURES 

 Emerging heterogeneous compute clusters means we need: 

 To adapt existing concurrent data-structures  

 Developer new concurrent data-structures 

 Lock based programming may still be useful but often these algorithms will 

need to be lock-free 

 Of course, this is a key application of the HSA memory model 

 To showcase this we highlight the development of a well known (HLM) 

obstruction-free deque* 
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*Herlihy, M. et al. 2003. Obstruction-free 

synchronization: double-ended queues as an example. 

(2003), 522–529. 

 



HLM - OBSTRUCTION-FREE DEQUE 

 Uses a fixed length circular queue 

 At any given time, reading from left to right, the array will contain: 

 Zero or more left-null (LN) values  

 Zero or more dummy-null (DN) values 

 Zero or more right-null (RN) values 

 At all times there must be: 

 At least two different nulls values 

 At least one LN or DN, and at least one DN or RN 

 Memory consistency is required to allow multiple producers and multiple 

consumers, potentially happening in parallel from the left and right ends, to see 

changes from other work-items (HSA Components) and threads (HSA Agents) 
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HLM - OBSTRUCTION-FREE DEQUE 
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LNLN vLN RNv RNRN

left right

Key: 

 

LN  – left null value 

RN   – right null value 

v       – value 

 

left   – left hint index 

right  – right hint index 



C REPRESENTATION OF DEQUE 

struct node { 

   uint64_t type :  2;       //  null type (LN, RN, DN) 

   uint64_t counter : 8 ;  // version counter to avoid ABA 

   uint64_t value : 54 ;   // index value stored in queue 

}  

struct queue { 

    unsigned int size;      // size of bounded buffer 

    node * array;           // backing store for deque itself 

} 
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HSAIL REPRESENTATION 

 Allocate a deque in global memory using HSAIL  

 

      @deque_instance: 

           align 64 global_u32  &size; 

           align 8 global_u64 &array; 
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ORACLE 

 Assume a function: 

   function &rcheck_oracle (arg_u32 %k, arg_u64 %left, arg_u64 %right) (arg_u64 %queue); 

 Which given a deque  

 returns (%k) the position of the left most of RN 

 ld_global_acq used to read node from array 

 Makes one if necessary (i.e. if there are only LN or DN) 

 atomic_cas_global_ar, required to make new RN 

 returns (%left) the left node (i.e. the value to the left of the left most RN position) 

 returns (%right) the right node (i.e. the value at position (%k)) 
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RIGHT POP 
function &right_pop(arg_u32err, arg_u64 %result) (arg_u64 %deque) { 

   // load queue address 

   ld_arg_u64 $d0, [%deque]; 

@loop_forever: 

   // setup and call right oracle to get next RN 

   arg_u32 %k; arg_u64 %current; arg_u64 %next; 

   call &rcheck_oracle(%queue) ; 

   ld_arg_u32 $s0, [%k]; ld_arg_u64 $d1, [%current]; ld_arg_u64 $d2, [%next]; 

   // current.value($d5) 

   shr_u64 $d5, $d1, 62;            

   // current.counter($d6) 

   and_u64 $d6, $d1,  

   0x3FC0000000000000;  

   shr_u64 $d6, $d6, 54;   

// current.value($d7) 

   and_u64 $d7, $d1, 0x3FFFFFFFFFFFFF;    

// next.counter($d8)     

   and_u64 $d8, $d2, 0x3FC0000000000000; shr_u64 $d8, $d8, 54;     brn @loop_forever ; 

} 
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RIGHT POP – TEST FOR EMPTY 
   // current.type($d5) == LN || current.type($d5) == DN 

    cmp_neq_b1_u64 $c0, $d5, LN; cmp_neq_b1_u64 $c1, $d5, DN; 

    or_b1 $c0, $c0, $c1; 

    cbr $c0, @not_empty ; 

    // current node index (%deque($d0) + (%k($s1) - 1) * 16) 

    add_u32 $s1, $s0, -1;   mul_u32 $s1, $s1,  16;   add_u32 $d3, $d0, $s0;           

    ld_global_acq_u64 $d4, [$d3];  

    cmp_neq_b1_u64 $c0, $d4, $d1; 

    cbr $c0, @not_empty;  

     st_arg_u32 EMPTY, [&err];   // deque empty so return EMPTY 

     %ret 

@not_empty: 
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RIGHT POP – TRY READ/REMOVE NODE 
  // $d9 = (RN, next.cnt+1, 0)   

  add_u64 $d8, $d8, 1;  

  shl_u64 $d9, RN, 62;  

  and_u64 $d8, $d8, $d9;  

 

  // cas(deq+k, next, node(RN, next.cnt+1, 0)) 

  atomic_cas_global_ar_u64 $d9, [$s0],  $d2, $d9;  

  cmp_neq_u64 $c0, $d9, $d2;  

  cbr $c0, @cas_failed; 

 

  // $d9 = (RN, current.cnt+1, 0) 

  add_u64 $d6, $d6, 1;  

  shl_u64 $d9, RN, 62;  

  and_u64 $d9, $d6, $d9;  

  

 // cas(deq+(k-1), curr, node(RN, curr.cnt+1,0) 

  atomic_cas_global_ar_u64 $d9, [$s1], $d1, $d9; 

  cmp_neq_u64 $c0, $d9, $d1;  

  cbr $c0, @cas_failed; 

  st_arg_u32 SUCCESS, [&err]; 

  st_arg_u64 $d7, [&value]; 

  %ret 
@cas_failed: 

  // loop back around and try again 
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TAKE AWAYS 

 HSA provides a powerful and modern memory model 

 Based on the well know SC for DRF  

 Defined as Release Consistency 

 Extended with scopes as defined by HRF 

 

 OpenCL 2.0 introduces a new memory model 

 Also based on SC for DRF 

 Also defined in terms of Release Consistency 

 Also Extended with scope as defined in HRF 

 Has a well defined mapping to HSA 

 

 Concurrent algorithm development for emerging heterogeneous computing 

cluster can benefit from HSA and OpenCL 2.0 memory models 
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